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Heterogeneous Experts and Hierarchical Perception
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Abstract—Existing underwater salient object detection (USOD)
methods design fusion strategies to integrate multimodal informa-
tion, but lack exploration of modal characteristics. To address
this, we separately leverage the RGB and depth branches to
learn disentangled representations, formulating the heteroge-
neous experts and hierarchical perception network (HEHP).
Specifically, to reduce modal discrepancies, we propose the
hierarchical prototype guided interaction (HPI), which achieves
fine-grained alignment guided by the semantic prototypes, and
then refines with complementary modalities. We further design
the mixture of frequency experts (MoFE), where experts focus on
modeling high- and low-frequency respectively, collaborating to
explicitly obtain hierarchical representations. To efficiently inte-
grate diverse spatial and frequency information, we formulate the
four-way fusion experts (FFE), which dynamically selects optimal
experts for fusion while being sensitive to scale and orientation.
Since depth maps with poor quality inevitably introduce noises,
we design the uncertainty injection (UI) to explore high uncer-
tainty regions by establishing pixel-level probability distributions.
We further formulate the holistic prototype contrastive (HPC)
loss based on semantics and patches to learn compact and general
representations across modalities and images. Finally, we employ
varying supervision based on branch distinctions to implicitly
construct difference modeling. Extensive experiments on two
USOD datasets and four relevant underwater scene benchmarks
validate the effect of the proposed method, surpassing state-
of-the-art binary detection models. Impressive results on seven
natural scene benchmarks further demonstrate the scalability.

Index Terms—Multimodal fusion, underwater perception,
expert learning, uncertainty guidance.
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I. INTRODUCTION

D IFFERENT from common semantic segmentation or
object detection, underwater salient object detection

(USOD) aims to overcome complex hydrological interfer-
ences, such as low light and uneven illumination, to locate
visually compelling regions, which is crucial for tasks like
image restoration/generation [1], [2] and path planning [3],
[4]. Currently, mainstream USOD approaches rely on depth
map assistance, i.e., multi-modal learning. We categorize
them into four types based on fusion strategies: 1) Single-
stream frameworks [5], relying on image-level fusion, although
lightweight, lack consideration of modal differences, inevitably
introducing significant noise and feature misalignment. 2)
Dual-stream frameworks [6], setting up separate encoding-
decoding networks for each modality with interactions at each
stage. Clearly, excessive interaction may lead to feature redun-
dancy and assimilation, making it difficult to highlight modal
representation differences and escalating model complexity. 3)
Triple-branch frameworks [7], integrating strategies 1 and 2,
generate additional modality through image-level fusion and
establish three interacting sub-networks aiming to align at
both image and feature levels. Despite achieving impressive
performance, the high computational cost raises obstacles
for deployment on underwater devices. Therefore, we pro-
pose the heterogeneous experts and hierarchical perception
(HEHP) framework, i.e., strategy 4, where: a) We abandon
coarse-grained image fusion in favor of fine-grained feature
interactions; 2) We only consider encoding-side interactions
to obtain high-dimensional representations and maximize
semantic difference preservation; 3) We decouple features in
frequency and achieve modal alignment based on the hetero-
geneous mixture of experts (MoE); 4) We assign different
supervision to each branch, generating diverse representations
by adjusting learning directions, reducing learning pressure by
having branches responsible for specific regions only, rather
than all. Based on the above, our strategy can achieve a
better balance between performance and efficiency. Hence,
we wonder two questions. 1) Why utilize heterogeneous
experts learning? 2) Why and how to design hierarchical
perception?

We answer the first question. Underwater scenes are more
complex and diverse compared to natural scenes. Some
approaches often involve customizing functional components
to address specific issues, requiring domain knowledge and
limiting generalizability. By combining components in a
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Fig. 1. Architecture comparisons of USOD/RGB-D SOD models. (a) Single-
stream model based on image-level fusion; (b) Dual-stream model based on
feature interaction; (c) Triple-stream model based on intermediate modality
or features; (d) Our proposed HEHP, exploring the low- and high-frequency,
trunk and detail features, respectively.

sequential or parallel manner, dividing representations some-
what expands the solution space. Limited resources and
potential functional overlap or conflicts among components
may lead to degradation, i.e., performance does not increase
proportionally with the number of components and even
decrease. Thus, we turn to leveraging MoE to avoid intricate
component design and combinations. On one hand, MoE
can dynamically adjust based on scene-specific characteris-
tics, such as allocating experts for lighting adjustment and
scale perception according to the input, e.g., low-light con-
ditions with large objects. On the other hand, during the
inference stage, we only need to select a subset of highly
responsive experts, reducing computational costs. Due to
modal differences, we require heterogeneous experts to handle
domain-specific representations and fusion. Heterogeneity is
reflected in: 1) Expert inputs; 2) The internal design of
experts; 3) The balanced weight distribution in the routing
network. Intuitively, MoE significantly increases the model
complexity. Therefore, we map representations to the rank
space to alleviate.

We answer the second question. Previous works [6], [8],
[9] focus more on exploring how to effectively fuse modal
information but overlook the inherent differences between
modalities. The RGB modal contains rich low-level infor-
mation such as textures and edges, while the depth modal
highlights positions based on differences in pixel depths,
leaning towards semantics. Moreover, most works tend to
independently utilize the overall data of single image (modal),
lacking consideration for decoupling, pairwise, and historical
representations. We aim to construct the fine-grained and
comprehensive alignment. Specifically, our hierarchical mod-
eling comprises four aspects: 1) Each representation consists
of high- and low- frequency, where we decouple features
and generate hierarchical region prototypes to aggregate dual-
domain pixels; 2) We modulate the high- and low- frequency
of RGB and depth features separately to explicitly learn
modality differences; 3) We construct three-scale alignment for
foreground and background, encompassing global semantic,

regional semantic, and patch dimensions, as well as inter-
modality and intra-batch dimensions, to acquire compact and
highly generalizable representations; 4) We utilize binary,
detail, and trunk maps to supervise three branches, implicitly
differentiating modal representations.

In summary, our insights are based on three observations:
1) RGB and depth modalities differ inherently, allowing
decoupling in frequency characteristics and supervision sig-
nals; 2) Fixed models learning general representations may
struggle to capture novel, scene-specific visual distribution
patterns; 3) Under imaging noise conditions, direct and coarse-
grained feature interaction may hinder rather than facilitate
cross-modal complementarity.

Technically, the existing challenges in feature fusion mainly
arise from three aspects: a) The complex visual relationships
in RGB images; b) The imaging quality of depth maps;
c) The alignment of corresponding features. We propose the
hierarchical prototype guided interaction (HPI) that achieves
calibration from local-global-local perspectives. We leverage
prototype clustering, mining common features to reduce the
noise interference. Through progressive calibration and refine-
ment of dual spaces (space and channel), we can effectively
learn modality-shared and modality-specific knowledge. We
further decode and decouple the frequency, combining sep-
arately with RGB and depth features, modulated by the
mixture of frequency experts (MoFE). To dynamically and
comprehensively integrate multi-domain features, we intro-
duce the four-way fusion experts (FFE). Within the experts,
we propose the continuous and adjacent feature aggrega-
tion approach to combine representations (this approach can
narrow the gap between details and semantics, and is also
applied in our decoder), along with scale and orientation
modeling. The introduction of depth errors is particularly
harmful to weak or fine-grained regions representations, e.g.,
small objects and irregular regions. We design the uncertainty
injection (UI) that employs Bayesian learning to model the
probability distributions and thus determine high uncertainty
regions. Compared to pixel-level unstable contrasts, we con-
struct paired and unpaired prototype contrasts, bringing similar
prototypes closer and distancing dissimilar/other sample pro-
totypes, forming the holistic prototype contrastive (HPC) loss.
Inspired by [10], we disentangle ground truth maps into two
parts, e.g., trunk and details, where the trunk emphasises the
central region of the object and the details indicate the edges
and their surrounding regions. We utilize them as supervision
for three separate branches to prevent identical supervision
from inducing representations homogenization.

Our contributions are as follows:
• We rethink existing frameworks and propose the HEHP

based on expert and hierarchical learning to address
complex underwater scenarios and efficiently achieve
modality alignment and fusion.

• We propose the HPI to enhance region representations
and achieve two-stage feature interactions. We design the
MoFE and the FFE to dynamically select the optimal
modulation and fusion expert groups. We introduce the
UI to locate highly uncertain areas, and formulate the
HPC loss to generate accurate and information-dense
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representations. We decouple supervision based on branch
characteristics.

• Without relying on additional data or large models, our
proposed HEHP surpasses state-of-the-art approaches on
six underwater and seven natural benchmarks.

II. RELATED WORK

A. Salient Object Detection

Based on development process, SOD methods can be
divided into two categories. The first category involves hand-
crafted feature design or the incorporation of prior features,
e.g., background [11] and center [12]. Despite the effective
performance of expert knowledge in specific scenarios, it
requires reconfiguration for new contexts and struggles to
transfer to broader and more complex visual patterns. The sec-
ond category of data-driven paradigms utilizes convolutional
neural networks, Transformer series, or combination of both to
extract high-dimensional features. Various enhancement strate-
gies, such as multi-scale perception, edge supervision, and
hybrid losses, are designed to explore complete salient objects.
Although these methods have achieved promising results,
there is still significant space for improvement in challenging
scenarios such as low contrast, multiple objects, and complex
backgrounds. Therefore, some recent works focus on two main
aspects: 1) Improving image resolution to enrich initial visual
information [13]; 2) Attempting to introduce additional visual
cues [14], [15] as guidance or supplementation to improve
detection performance and robustness. For example, leveraging
the depth differences can effectively locate the approximate
edges or contours of people or objects, laying the foundation
for further SOD. However, existing methods primarily rely on
full-stage and high-dimensional embedding spaces for lossless
and sufficient feature interaction, making them susceptible
to interference from low-quality samples and challenging for
practical deployment. We aim to implement at the encoder
level in the high information density rank space to ensure
higher noise tolerance and computational efficiency.

B. RGB-D Salient Object Detection

RGB-D SOD has been extensively explored in natural
scenes, but research in underwater scenarios is limited. In
natural scenes, Cong et al. [8] leveraged the advantages
of CNN-based local modeling and Transformer’s long-range
dependencies. Hu et al. [6] designed a unified feature
encoding, fusion, and decoding network to avoid integrating
additional components. Yin et al. [16] pre-trained the back-
bone network using image-depth pairs from ImageNet-1K,
endowing with the ability to encode RGB-D representations.
These methods excel with well-aligned, high-quality data but
struggle when depth maps are noisy or misaligned. Moreover,
the paired underwater datasets are limited, causing pre-training
to be inefficient. In underwater scenes, challenges such as poor
lighting remain. Islam et al. constructed [17] the first USOD
dataset, but due to its small scale, it is ineffective in validating
the efficacy of methods. To address this, Hong et al. [18] built
the first large-scale dataset, i.e., USOD10K, encompassing
various scenes and equipped with depth maps. Recently,

Jin et al. [19] devised a curriculum learning-based frame-
work, considering the difficulty differences of different training
samples in two phases. However, current methods lack consid-
eration of modality characteristics and struggle to adjust based
on the input (dominance of information from different modal-
ities or equal weighting) by designing fixed components for
modality fusion. Our HEHP leverages heterogeneous experts
and hierarchical perception to adapt architecture and fuse
representations for different contexts dynamically, enabling
unified modeling of natural and underwater scenes.

C. Mixtures of Experts

MoE [20], [21] partitions the representation space into
multiple subspaces, assigning them to different experts for
processing, and finally consolidates the processing results
through integration strategies, with weighted fusion being the
most widely used. Building upon the principle, large language
models extensively adopt it as a foundational framework,
continually increasing parameters, i.e., expert scale, to learn
more complex representations. During inference, a subset
of high-performance experts is dynamically selected based
on the input. Inspired by this, we apply MoE to modality
and dual domain space fusion. Through heterogeneous learn-
ing representations, we can enhance beneficial information
between modalities while disregarding harmful information.
Theoretically, the number of experts and representation space
are proportionate, yet inevitably introduce numerous param-
eters, which is disadvantageous for deploying models on
underwater mobile devices with high real-time requirements.
Recently, low-rank adaptation (LoRA) [22], [23] has garnered
widespread attention and is employed in efficient machine
learning systems. By reducing data dimensions and noise
to acquire highly informative representations, it effectively
reduces complexity without significantly compromising core
features. Hence, we transform the complex high-dimensional
space into the low-rank space across multiple components and
experts in our proposed framework. In addition, pixel space is
susceptible to interference from complex underwater scenes,
such as lighting distribution, which even expert collaboration
struggles to mitigate. We further convert spatial experts into
spectral experts to achieve frequency disentanglement.

D. Uncertainty Estimation

Mismatched depth information can degrade fine-grained
features, making uncertainty estimation crucial. Uncertainty
is divided into aleatoric and epistemic types. Aleatoric uncer-
tainty arises from noise in the data, e.g., depth map errors,
and can be learned implicitly by the network. Epistemic
uncertainty reflects the model’s confidence in its predictions
and often requires external techniques like Gaussian mixture
models (GMMs) [24] or deep ensembles [25]. GMMs are
effective in modeling complex, multimodal uncertainty but
require significant computational resources to update and
maintain multiple Gaussian components. Deep ensembles
combine multiple models to predict, but are computationally
expensive, as they require independent training of several
models. Both methods cannot be directly integrated into
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Fig. 2. The overview of our HEHP. We use separate encoders to generate RGB and depth features, which are then interacted with by the HPI. Subsequently, we
decode and decouple the fused features, equipped with RGB and depth representations, and modulate through hierarchical MoFE to leverage the strengths of
each modality. The FFE is utilized to merge heterogeneous features and dynamically adjust strategies based on the input. Furthermore, we enhance sensitivity
to fine-grained regions using the UI. Leveraging modality differences, we employ hierarchical supervision with detail and trunk maps and introduce contrastive
learning to generate compact and universal representations.

an end-to-end training pipeline, which complicates in large-
scale, gradient-based deep learning models. To overcome
this, we leverage Bayesian inference [26], [27] to estimate
epistemic uncertainty by learning the posterior distribution
of network weights. This approach enables gradient-based
optimization, allowing it to operate without step-by-step
training. Furthermore, we introduce the UI, which identifies
high-uncertainty regions and enhances feature representations,
improving fine-grained perception, especially in noisy or com-
plex scenes such as low-quality depth maps and cluttered
backgrounds.

III. PROPOSED METHOD

A. Motivation and Overview

The motivation of our proposed method is to decouple
salient objects into detail and trunk, high- and low-frequency
components, which are separately predicted by RGB and
depth branches and then integrated together. And we maxi-
mize the differences between salient and non-salient regions
based on contrastive learning. By employing the decoupling-
integration-contrast process, we aim to explore the charac-
teristics of different modalities and leverage their respective
advantages.

As shown in Figure 2 and Algorithm 1, our method
follows the overall paradigm of an encoder-decoder archi-
tecture and consists of five key elements. Given an image
I ∈ R3×H×W and corresponding depth map D ∈ R3×H×W ,
we feed them to the respective encoders (weights are not
shared) to obtain multiscale feature maps Xi ∈ RCi×Hi×Wi and
Fi ∈ RCi× Hi×Wi , where C, H, and W denote the number of
channels, height, and width, respectively. We further utilize
the HPI to align the same-level features and generate Mi. We
decouple the frequency, input into the MoFE for modulation,
and obtain high and low frequency M̂h and M̂l. We then
combine the last features of the two branches, and M̂h, M̂l

via the FFE, generating M̂o. By modeling the uncertainty

Algorithm 1 Ours HEHP

through the UI, M̂o is decoded in combination with the
encoded features of the two branches separately. Finally,
we apply three supervisions to achieve implicit hierarchical
learning.
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Fig. 3. Structure of the HPI. We obtain compact representations based on local frequency prototypes and apply calibration and refinement to obtain cross-modal
representations with different emphases.

B. Hierarchical Prototype Guided Interaction

Based on the complex visual relationships in RGB images
and the imaging quality of depth maps, different regions of
salient objects may have weakened features, while the most
prominent parts still maintain good representations. Inspired
by [28] and [29], we generate prototypes by clustering to
obtain common feature representations that focus on the core
regions. We further utilize generated frequency prototypes as
complements to the initial features, achieving feature align-
ment from coarse to fine levels. Note that, unlike previous
works [28], [29], [30] that align prototypes or pixels, leading
to under- or over-alignment, our approach combines the advan-
tages of both by aligning details guided by critical features.
In addition, since the representations learned by the RGB and
depth branches are different, we refine them to obtain features
with different emphases. The details are in Figure 3.

Calibration. Based on octave convolution [31], we effi-
ciently decouple features into high and low-frequency com-
ponents in an end-to-end manner:

Xi
l = F L→L �Xi�+ AP

�
FH→L �Xi��

Xi
h = FH→H �Xi�+ UP

�
F L→H �Xi�� (1)

where F , UP and AP represent convolution, upsampling and
average pooling, respectively. To perceive the differences of
content, we first apply convolution followed by softmax for
Xi

l and Xi
h to generate attention weight Wi

lx and Wi
hx:

Wi
lx = Softmax

�
F
�
Xi

l

��
, Wi

hx = Softmax
�
F
�
Xi

h

��
(2)

For convenience, we omit the feature transformation. We
randomly initialize the np cluster centers Ci

lx,C
i
hx ∈ R

np×Ci ,
and then generate the pixel difference Di

lx,D
i
hx by:

Di
lx = Wi

lx · (X̂
i
l − Ĉi

lx),Di
hx = Wi

hx · (X̂
i
h − Ĉi

hx) (3)

where (·) denotes element-by-element multiplication, Xi
l and

Ci
lx underwent dimensionality transformations to obtain X̂i

l
and Ĉi

lx, respectively. We then obtain the high- and low-
frequency prototypes Pi

lx,P
i
hx by aggregating along the spatial

dimensions:

Pi
lx =

PH×W
j=1 Di( j)

lx

‖
PH×W

j=1 Di( j)
lx ‖

, Pi
hx =

PH×W
j=1 Di( j)

hx

‖
PH×W

j=1 Di( j)
hx ‖

(4)

where ‖ · ‖ represents l2 norm. Intuitively, by reducing the
differences in random parameters and features, clusters repre-
senting the region representation’s centers can be generated,
similar to superpixel clustering, although the latter operates
in the original pixel space. We further fuse Pi

lx,P
i
hx with

corresponding initial features and then generate hierarchical
prototype-guided features Xi

lp and Xi
hp:

Xi
lp = F

�
Concat(Xi

l,P
i
lx)
�
, Xi

hp = F
�
Concat(Xi

h,P
i
hx)
�

(5)

where Concat represents the channel concatenation. Similarly,
we can obtain prototype-enhanced depth features Fi

lp and Fi
hp.

Calibrating across multiple scales introduces a significant
number of parameters and computational complexity. The
most straightforward approach is to reduce the scales, but this
may introduce noise due to insufficient interactions. Therefore,
we transfer the interaction space to the low-rank space with
high information density. We use 1 × 1 followed by 3 × 3
depthwise separable convolution for Xi to encode local fea-
tures and generate key Kx and value Vx.1 For queries, we
perform the same operations on Xi

lp and Xi
hp, generating Qx

lp
and Qx

hp. For depth features, similar operations are leveraged.
We provide two interaction spaces, i.e., channel and spatial,
for comprehensive fusion and efficient computation. We can
obtain the correlation matrix Mxlp→k:

Mxlp→k = Softmax

 
Qx

lp ⊗K f
lp

τxlp→k

!
∈ {RC×C ∨ R...×Ws×Ws } (6)

where τ, Ws denote learnable scaling factor and window size,
respectively. Similarly, we can obtain Mxhp→k, M flp→k, and
M fhp→k. The interacted features are:

X̂i =M flp→k ⊗Kx ⊗M fhp→k,

F̂i =Mxlp→k ⊗K f ⊗Mxhp→k (7)

where ⊗ is matrix multiplication.
Refinement. We apply spatial compression on X̂i and F̂i

respectively, and then fuse them to obtain the channel map
Sr,Sd:

Sr,Sd = Split
�
F
�
Concat

�
AP

�
X̂i� ,AP

�
F̂i���� (8)

1For simplicity, we omit the indices here.
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Fig. 4. Structure of the MoFE, FFE, and UI. We utilize the MoFE to modulate frequency signals and the FFE to dynamically fuse heterogeneous information,
minimizing error interference to the maximum extent. We employ pixel probability distribution to localize regions with high uncertainty.

where Split indicates channel split. Thus, refined mixed feature
Mi is generated by:

Mi = F
�
Concat

�
X̂i · Sr, F̂i · Sd

��
(9)

For channel refinement, the operation is similar.

C. Mixture of Frequency Experts/Four-Way Fusion Experts

RGB features carry more details, corresponding to high
frequency; depth features reflect pixel positions, corresponding
to low frequency. Based on the characteristics, we decouple
features and allocate the hierarchical MoFE. Due to the
differences in frequency and modality, direct fusion is sub-
optimal and challenging to modulate based on each sample.
Therefore, we introduce the FFE to dynamically merge het-
erogeneous features, allowing experts to automatically learn
the optimal combination strategy, reducing manual design and
improving efficiency. The number of experts does not directly
correlate with performance improvement and has an upper
limit; introducing too many experts may lead to redundancy
and performance degradation. Similarly, the spatial capacity
of expert handling should not be excessive; we adjust all
interaction spaces to low rank. The details are in Figure 4.

Leveraging the aggregation strategy A, we progressively
shrink Mi in the decoder and obtain M̂:

A(M1, . . . ,Mi) =

(
M1 if i = 1
F(A(M1, . . . ,Mi−1) + Mi) if i > 1

(10)
Similar to Eq. 1, we decouple M̂ to generate low-frequency

M̂l and high-frequency M̂h based on octave convolution. We
consider the following: 1) The high-frequency information of
RGB images is stronger in shallow feature representations;
2) Depth map information is constrained, making its low-
frequency variations less pronounced. Therefore, we fuse M̂h

and X1, M̂l and F1, then input into mixture of high and low-
frequency experts for modulation:

M̂h := F(M̂h + X1), M̂l := F(M̂l + F1) (11)

1) MoFE. MoFE consists of two components, i.e., high- and
low- frequency. Taking high frequency as an example, the cru-
cial components include a routing mechanism (implemented
by a gating network G) and experts E . G allocates weights to

different E . To enrich representations, we use average and max
pooling (MP) to compress space and then formulate:

G(M̂h) = Softmax
�
F
�
AP(M̂h) + MP(M̂h)

�
+ z

�
,

z ∼ N(0, 1) (12)

where z follows the standard Gaussian distribution aimed at
enhancing robustness. Therefore, we remove this term during
the inference stage.

Similar to the HPI, to maintain a balance between com-
putational costs and performance, we place experts in the
low-rank space to handle features. Considering variations
in object scale and position, we design kernels of multiple
sizes for the experts and decompose them into horizontal and
vertical directions (also optimizing computational complexity).
Therefore, the final output M̂h is:

M̂h := M̂h +

NEX
n=0

G(M̂h) · E i(M̂h) (13)

where N is the number of experts. Similarly, we can obtain
the modulated M̂l.

2) FFE. To introduce semantic representation, we utilize the
final layer features of two branches, i.e., XFinal and FFinal. FFE
and MoFE share the same essence. The difference is that FFE
receives four heterogeneous outputs, i.e., different modalities
and spaces. Therefore, utilizing the aggregation method in
Eq. 10, we fuse within the experts and generate M̂o. We further
perceive scales and orientations:

M̂o := Fup

 
LX

i=1

�
F1×(2l+1) �Fdown(M̂o)

�
+F (2l+1)×1 �Fdown(M̂o)

���
(14)

where Fdown and Fup are used to reduce the original dimen-
sionality to the low rank and to restore, respectively. L is the
convolution levels. The final output M̂o is:

M̂o := XFinal +

NEX
n=0

G(XFinal) · E(XFinal,FFinal, M̂h, M̂l) (15)

During training iterations, the gating function may tend to
frequently activate experts with larger weights WE , leaving
other experts idle, leading to decreased expert utilization
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TABLE I
QUANTITATIVE COMPARISON ON USOD10K AND USOD BENCHMARKS.

BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD, FOLLOWED BY
PERFORMANCES INDICATED WITH UNDERLINES

and diversity. To achieve load balancing, we introduce the
balancing loss Lbalance as a constraint,

Lbalance = − log

 
NEY
i=0

exp
�
WEi/τ

�PNE
j=1 exp

�
WE j/τ

�! (16)

D. Uncertainty Injection

By aligning from coarse to fine levels, we reduce the over-
all interference of depth errors on salient objects. However,
for regions with weak feature representations or fine-grained
details, the introduction of error information can degrade the
original representations or even obscure, resulting in increased
uncertainty. Thus, we propose the UI, which introduces prob-
ability modeling to locate regions with high uncertainty and
further reduce depth noise, shown in Figure 4.

We establish Laplace distribution for each pixel to construct
the uncertainty maps. We first obtain the mean µ and variance
b separately by using two different projections (towards chan-
nels of 1) on M̂o:

µ = F(M̂o),b = F(M̂o) (17)

Why not choose Gaussian distribution modeling? The
Laplace distribution is easier to optimize and better highlights
the details of features. In Table IV, we further validate through
quantitative results. Gradients cannot directly optimize random
samples. Following [32], we randomly sample several times
to generate variable ξ from standard Laplace distribution to
obtain new uncertain distribution of pixels, i.e, L = µ + ξb.
We further calculate the variance and normalize to yield
uncertainty maps U:

U =
F
�
Var

�
φ
�
Sample(L)

���

F �Var
�
φ
�
Sample(L)

���

 (18)

where Var(·) and φ(·) denote the sample variance and sigmoid
function, respectively.

Similar with the HPI, we apply 1 × 1 followed by 3 × 3
convolution on M̂o to obtain the query Qm, key Km, and value
Vm. We further apply U to the query and key to generate

the correlation matrix Mu, thus, we obtain uncertainty-aware
features generated based on self-attention by:

Mu = Softmax
�

(QmU) ⊗ (KmU)
τu

�
, M̂o := Vm ⊗Mu (19)

E. Loss Function

We enhance features using frequency prototypes but lack
exploration of semantic prototypes, which is crucial for com-
prehensive understanding of salient regions. Therefore, we
utilize the HPC loss for modeling, which includes two dimen-
sions: global and patch. We first employ masked average
pooling (MAP) for RGB modality to generate foreground
and background prototypes based on decoder features and
corresponding binary outputs. We have:

P f
r =

PH,W
h=1,w=1 Ohw · M̂xPH,W

h=1,w=1 Ohw
,Pb

r =

PH,W
h=1,w=1(1 −Oi j) · M̂xPH,W

h=1,w=1 1 −Ohw
(20)

Similarly, we can generate global foreground and back-
ground prototypes for deep modality. We align prototypes
between modalities and batches by pulling similar prototypes
closer and pushing dissimilar prototypes apart, formulating the
global prototype contrastive loss. We have Lglobal by:

Lglobal =
1
B

BX
i=1

X
k∈K

− log
exp(si

k)
exp(si

k) +
P

n∈N i
k

exp(si
k,n)

(21)

where B is the batch size, K is the total number of classes,
i.e., 2. N is the set of negative samples, sk = cos(Pk

r ,Pk
d)/τ.

Due to limitations in batch size and GPU memory, the
number of global prototypes is insufficient to support com-
prehensive contrast. Therefore, we apply the MAP at the
patch level to generate prototypes. Expanding on Eq. 21, we
establish intra-class and inter-class patch contrast to formulate
patch prototype contrastive loss Lpatch,

Lpatch =
1
B

BX
i=1

X
k∈K

�
− log

exp(si
k)P

p∈P i
k
exp(si

k,p)

− log
exp(si

k)

exp(si
k) +

P
n∈N i

k
exp(sk̄,i

k,n)

�
(22)

where P is the set of positive samples. Different from local
prototypes with more noise from random parameters in the
HPI, the patch prototypes we obtain can more accurately
capture fine-grained representations.

We apply supervision to the output of the RGB, depth,
and fusion branches. Each branch loss LRGB, LDepth, LFusion
consists of structure loss Lstructure (combination of binary
cross entropy loss, intersection over union loss, and structural
similarity index loss) and three auxiliary losses. We have
LRGB:

LRGB = Lstructure + Lglobal + Lpatch + 0.1× Lbalance (23)

Similarly, we can obtain LDepth and LFusion. The total loss
LTotal can be expressed as:

LTotal = αLRGB + βLDepth + γLFusion (24)

where α, β, γ are hyperparameters. We empirically set α, β,
γ to 1.2, 0.3, and 0.3.
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TABLE II
QUANTITATIVE COMPARISON ON MAS3K, RMAS, UFO120, AND RUWI BENCHMARKS

TABLE III
QUANTITATIVE ABLATION OF CRUCIAL COMPONENTS. B1, B2, C1, C2, C3, C4, C5, AND C6 INDICATE PVT-V2, SWIN-S, THE HPI, MOFE, FFE,

UI, AND HPC LOSS, HIERARCHICAL SUPERVISION, RESPECTIVELY. THE PRECEDING COMPONENTS PROVIDE THE FEATURE FOUNDATION FOR
SUBSEQUENT COMPONENTS. WHEN LACKING, WE UTILIZE CONVOLUTION AND CHANNEL CONCATENATION TO COMPENSATE

TABLE IV

QUANTITATIVE ABLATION ON DISTRIBUTION IN THE UI

IV. EXPERIMENT

A. Datasets

We conduct experiments on eleven benchmarks in under-
water and natural scenes. We select two widely used USOD
datasets equipped with depth maps, USOD10K [18] and
USOD [17], where USOD is used for testing only. USOD10K
contains 7178 training and validation pairs, as well as 1026
test images, with diverse size variations and rich scenes, while
USOD comprises 300 images. Additionally, we employ four
underwater datasets: MAS3K [42], RMAS [43], UFO120 [44],
and RUWI [45]. Due to the lack of corresponding depth maps,
we utilize a monocular depth estimation method, i.e., DPT

[63], for generation. Furthermore, seven natural scene datasets,
STERE [53], SIP [54], NJU2K [55], NLPR [56], DUT [57],
DUTS-TE [61] and VizWiz-SO [62] are chosen.

B. Implementation Details

We implement our method using PyTorch and conduct all
experiments on NVIDIA RTX A100s. For the USOD10K and
USOD datasets, following [18], inputs are scaled to 224×224.
For the MAS3K, RMAS, UFO120, RUWI, following [40],
we adjust to 512× 512. For natural scenes datasets, following
[16], our training set consists of 1485 images from the NJU2K
dataset and 700 images from the NLPR dataset. We evaluate
on the corresponding test sets, as well as the STERE1000
and SIP datasets. For the DUT dataset, following [16], we
employ the original training set along with the training sets
of NJU2K and NLPR, the original test set for evaluation, and
resize the input to 384×384. We utilize the different backbone
networks as the encoder. For training, we use AdamW as the
optimizer with 150 epochs, the initial learning rate of 1e-4,
and the batch size of 16. For testing, we do not use tricks
(e.g., test-time augmentation) and post-processing (e.g., CRF).
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Fig. 5. Qualitative comparison on underwater scenes.

To ensure fairness, we obtain evaluation results by utilizing the
saliency maps provided by the projects or retraining using the
official source codes.

C. Evaluation Metrics

We adopt eight evaluation metrics: S-measure (S α)
[64], mean and maximum E-measure (Em

φ , Eφ) [65], mean,
weighted, adaptive, and maximum F-measure (Fm

β , Fw
β , F

a
β , Fβ)

[66],2 and Mean Absolute Error (MAE). Note that the higher
the better for the first seven.

D. Comparison on Underwater Benchmarks

1) Methods on USOD10K and USOD: We compare our
method with fifteen different types of methods, including DCF
[33], SPNet [34], TC-USOD [18], PopNet [36], CATNet [37],
TPCL [30], HiDANet [35], MSNet [38], PICR-Net [8], SPDE
[19], UniTR [39], CPNet [6], Dual-SAM [40], DFormer [16]
and VSCode [41].

2) Methods on MAS3K, RMAS, UFO120, and RUWI: Ten
models, i.e., OCENet [46], ZoomNet [47], MASNet [43],
SETR [48], H2Former [49], SAM [50], SAM-Adapter [51],
CPNet [6], Dual-SAM [40], and MAS-SAM [52] are selected.

3) Quantitative Comparison: In Table I, the HEHP
achieves the best performance across all metrics on USOD10K
and USOD, surpassing existing methods, including those
relying on additional data (e.g., VSCode, DFormer) or large
foundation models (e.g., DualSAM). For example, the HEHP
outperforms DualSAM by +1.1% in S α and +0.9% in Fβ

on USOD10K, demonstrating the effectiveness of domain-
specific design over general pre-training. From the model

2The mainstream evaluation metrics vary slightly across benchmarks.

design perspective, the HEHP integrates lightweight yet adap-
tive components such as the MoFE and the FFE, which
decompose and fuse features across frequency domains. This
design captures both local details and global semantics, crucial
for handling low-contrast and structure-ambiguous underwater
scenes. Compared to CPNet’s fixed and heavily coupled fusion
modules, our expert-based routing adapts more flexibly to dif-
ferent inputs while maintaining efficiency, leading to stronger
performance (e.g., +1.5% S α on USOD10K). The HPI further
alleviates cross-modal misalignment by guiding interactions
through hierarchical prototypes, particularly benefiting scenar-
ios with noisy depth or cluttered backgrounds. In contrast,
methods like TPCL lack structured alignment and suffer under
such conditions. The HEHP improves upon TPCL by +4.2%
in Fβ and +5.5% in Eφ on USOD, highlighting the advantages
of guided interaction and global-patch contrast. From the data
characteristics perspective, underwater scenes introduce strong
domain shifts, including low visibility, severe color distortion,
and inaccurate or synthetic depth. These factors limit the
generalization of models trained on natural images. SAM-
based approaches, though trained on massive datasets, struggle
under these conditions, and adapter tuning alone is insuf-
ficient to bridge the domain gap. The HEHP explicitly
addresses these challenges through uncertainty-aware learning,
which suppresses unreliable signals, and hierarchical supervi-
sion that encourages diverse, modality-specific representation
learning. As shown in Table II, the HEHP delivers even
more notable gains, surpassing MAS-SAM and CPNet by
an average of +2.2% in S α and +2.7% in Em

φ , confirming
its robustness across varied underwater environments. These
results underline the importance of aligning model structure
with data characteristics to achieve both adaptability and
generalization.
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Fig. 6. Quantitative ablation of models at different stages with the inclusion of proposed components.

TABLE V

QUANTITATIVE COMPARISON ON COMPUTATION AND MODEL
COMPLEXITY. WE COMPARE ON PARAMETERS (M),

FLOPS (GMAC), AND FPS

TABLE VI

QUANTITATIVE ABLATION ON THE HPC LOSS

4) Qualitative Comparison: In Figure 5, we offer visual
comparisons across different scenarios. Our method excels in
perceiving multiple objects and details comprehensively (row
a). In low-contrast environments (row b), false negatives are
mitigated. When dealing with complex backgrounds (row c)
and low-light conditions (row d), our approach effectively
tackles noise and imaging interferences. For elongated (row
e), irregular (row f), and camouflaged targets (row g), our
approach achieves long-range modeling, global localization,
local calibration through hierarchical perception, and avoids
false positives.

E. Ablation Studies

To validate the effect of proposed components and hyper-
parameters, we conduct quantitative and qualitative ablation
analyses on the USOD10K and USOD datasets.

1) Effect of the Crucial Components: In Table III, we cate-
gorize the components into two types: internal and external to
the model. Internally, we use Swin and PVT as the backbone,
with the performance of the former being inferior. Based on
this, we further validate the correlation of performance by
incrementally adding components in one-step and two-step
manners. We observe that the most significant performance
improvements occur with the introduction of expert learning.

We argue that the MoFE and the FFE are tightly coupled
to improve feature fusion. The MoFE separates high- and
low-frequency features, capturing modality-specific details,
while the FFE dynamically selects experts based on spatial
and orientation differences, ensuring that features from each
modality are effectively aligned and fused. The HPI aligns
features at different abstraction levels, reducing modality dis-
crepancies and improving the quality of the fused features. The
UI directs attention to high-uncertainty regions, focusing on
fine-grained or noisy parts that may otherwise disrupt feature
fusion. Together, the HPI and the UI ensure that the interaction
process is both semantically and spatially accurate, especially
in complex underwater scenes. Externally, HPC loss and
hierarchical supervision enhance the model’s final represen-
tations. HPC loss enforces compact prototype learning at both
global and patch levels, improving foreground-background
distinctions. However, when comparing Models VIII, XII,
and XV, despite hierarchical supervision implicitly leveraging
modality characteristics to shape distinctive representations,
the performance improvement is not as prominent in the
absence of heterogeneous expert handling. Therefore, when
representations are mixed, explicit disentanglement proves to
be more crucial. In Table VI, we gradually equip CPNet
with Llocal and Lglobal. We find that the gain from Llocal is
not as significant as Lglobal, and when both work together,
the combined effect surpasses that of each one. We analyze
that the lack of alignment in global prototypes may lead
to inaccurate foreground-background representations, result-
ing in prototypes generated from patch divisions containing
more noise and consequently reducing the quality of con-
trasts. Through the supplementation of fine-grained prototypes,
global contrasts are promoted, thereby enhancing regional
divisions. In Figure 6, we present the quantitative impact of
these components at each stage.

2) Effect of Backbone Network and Model Efficiency Anal-
ysis: In Table III and Table V, we use PVT-v2 [67] and
Swin-S [68] as backbone networks, with similar performance
but higher model efficiency for the former. Compared to
CPNet, our Swin-S version surpasses by +1.8%, +0.9%,
+2.0%, −0.8%, and +1.9%, +3.5%, +2.9%, −1.0% on four
indicators, respectively. Despite incorporating several compo-
nents, our method achieves a balance between performance
and efficiency through low-rank optimization and reduction of
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TABLE VII

QUANTITATIVE ABLATION ON COMPONENTS OF THE HPI AND THE MOFE. C1, C2, C3, C4, C5, C6, C7, C8, C9 INDICATE THE CROSS-ATTENTION,
SPATIAL-CALIBRATION, CHANNEL-CALIBRATION, SPATIAL-REFINEMENT, CHANNEL-REFINEMENT, LAPLACE, FOURIER, DISCRETE COSINE,

OCTAVE CONVOLUTION, RESPECTIVELY

TABLE VIII

QUANTITATIVE ABLATION ON COMPONENTS OF THE MOFE, FFE, AND SUPERVISION STRATEGY. C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 INDICATE
THE SPATIAL EXPERT, LOW-FREQUENCY EXPERT, HIGH-FREQUENCY EXPERT, INVERSE FREQUENCY, BALANCED, SCALE, DIRECTION, SINGLE

SUPERVISION, INVERSE SUPERVISION, OURS, RESPECTIVELY

interaction space, significantly reducing model and computa-
tional complexity.

3) Analysis of Alignment Strategies: As shown in
Table VII, we employ the HPI for aligning modal features,
which is based on cross attention (CA). To emphasize the
differences and advantages of the proposed component, we
divide it into four subparts based on interaction space and
process. We find that both spatial and channel calibration
outperform vanilla CA. We analyze the key lies in: 1) Intro-
ducing local prototype aggregation pixels to provide references
for reducing mismatch fusion; 2) Decomposing features into
different frequencies to provide more fine-grained interaction
elements. Moreover, the computational complexity of vanilla
CA is O(H2W2), while ours is O(W2

s ) or O(C2) (more
accurately proportional to the rank), significantly reduced.
Correspondingly, we integrate spatial and channel refinements,
focusing on high-interest regions from two dimensions, further
enhancing overall performance. To further explore the differ-
ences in frequency decomposition methods, we compare with
three traditional methods. We analyze that the performance
differences stem from: 1) Traditional methods lacking sensi-
tivity to changes in feature content, typically based on fixed
mathematical transformations; 2) Complex transformations in

underwater scenes, where RGB and depth maps carry massive
noises, interfering with decomposition. Additionally, since the
processed features are high-dimensional data, their complexity
is considerably higher compared to octave convolutions.

4) Analysis of Expert Design: In Table VIII, when we do
not decouple M̂, the MoFE transforms into spatial experts to
modulate RGB and depth features, i.e., Model I. In compar-
ison to single-type frequency experts, spatial experts exhibit
superiority; however, when combined, the opposite holds true,
as in Models II-IV. Reversing the frequency order i.e., high-
frequency and low-frequency experts modulate depth and RGB
representations separately—yields results inferior to spatial
experts. Our analysis reveals: 1) Modal representation differ-
ences dictate expert attributes i.e., RGB features emphasize
details, while depth features highlight semantics, and they
are non-interchangeable; 2) Frequencies possess combinatory
characteristics, making it challenging for a single frequency to
comprehensively characterize feature content. By leveraging
Lbalance for constraint to balance routing, we further enhance
performance. The fusion of convolutions across different scales
in horizontal and vertical perceptual directions outperforms
vanilla convolutions. We analyze that modeling the motion
direction, position of underwater objects, and scale variations
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Fig. 7. Quantitative ablation study on hyperparameters: number of prototypes Np, number of experts NE , and low-rank approximation R.

due to shooting angles is particularly crucial, unlike natural
scenes.

5) Analysis of Supervision: In Table VIII, we employ three
supervision strategies: 1) Binary maps for all branches; 2)
Detail and trunk maps for RGB and depth branches, with
fusion branches corresponding to binary maps; 3) Supervision
reversal for RGB and depth branches in Strategy 2. We
observe that Strategy 2 performs the best while Strategy 3
performs the worst. Our analysis suggests that misalignment
between supervision and representation may disrupt gradient
optimization, and conversely, can promote.

6) Analysis of Hyperparameter Settings: In Figure 7, we
consider three key parameters: the number of frequency pro-
totypes Np, experts NE , and the rank R. As Np increases
from 1 to 25, the model benefits from finer spatial parti-
tioning, which enhances boundary sensitivity and captures
localized structures in underwater scenes. However, beyond
Np = 25, the performance declines, aligning with the clas-
sic granularity-noise trade-off in superpixel clustering [69]:
excessive prototypes fragment semantically coherent regions,
amplifying noise from depth inaccuracies or texture artifacts.
Thus, Np = 25 emerges as an optimal point where spa-
tial resolution is maximized without compromising structural
coherence. Similarly, increasing NE from 1 to 6 improves per-
formance by encouraging functional specialization among the
experts. Each expert focuses on distinct modalities (e.g., RGB
textures or depth semantics) or frequency domains (high or
low), enabling richer and disentangled representations. When
6 < NE , redundancy arises as overlapping feature subspaces
dilute specialization, while increased parameters risk overfit-
ting under limited training data, just like diminishing returns in
ensemble learning [70]. For rank selection, the model performs
best at R = 24, in line with the information bottleneck [71].
This setting preserves the most informative components while
suppressing irrelevant variations. A smaller rank (R < 24)
fails to retain key high-variance features crucial for distin-
guishing objects from complex backgrounds, whereas a larger
rank (R > 24) captures noise-dominated subspaces, harming
generalization. This aligns with singular value decay patterns
[72] in underwater feature spaces, where the first 24 prin-
cipal components encapsulate the majority of discriminative
information.

F. Broader Impacts

We compare across seven natural scene benchmarks.

Fig. 8. Qualitative comparison on natural scenes.

1) Methods for Comparisons: Ten models, i.e., C2DFNet
[58], SPSN [28], HiDANet [35], PICRNet [8], XMSNet [9],
PopNet [36], DCTNet [59], DFormer [16], CPNet [6], and
VSCode [60] are selected.

2) Quantitative Comparison: In Table IX, our method
achieves the best performance across natural scene bench-
marks. On the large-scale STERE dataset, it outperforms
CPNet, i.e., the strongest method without additional data, by
+1.4%, +1.9%, and +1.4% in S α, Fa

β , and Em
φ , respectively.

Compared with underwater, natural scenes typically contain
clearer structures, richer textures, and more diverse seman-
tic content. The HEHP effectively separates and integrates
multi-scale, multi-frequency cues, enabling more accurate
localization and boundary perception under such complex
visual patterns. The incorporation of contrastive learning and
uncertainty modeling further enhances robustness, leading to
consistent improvements across datasets without relying on
external supervision or large-scale pretraining. In Table X, we
provide pseudo-depth maps for RGB images and also achieve
promising results on two large SOD benchmarks.

3) Qualitative Comparison: In Figure 8, we provide some
comparison cases in challenging scenarios. Our method
effectively establishes foreground-background differences in
low contrast (rows a and b) and low-quality depth map
(rows b, c, and d) scenarios, leveraging beneficial depth

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 21,2025 at 11:18:30 UTC from IEEE Xplore.  Restrictions apply. 



ZHA et al.: HETEROGENEOUS EXPERTS AND HIERARCHICAL PERCEPTION FOR USOD 3715

TABLE IX
QUANTITATIVE COMPARISON ON FIVE RGB-D NATURAL SCENES BENCHMARKS

TABLE X
QUANTITATIVE COMPARISON ON RGB SOD BENCHMARKS

Fig. 9. Failure cases.

information while reducing the interference of depth errors.
Despite significant variations in object scales (rows c and d),
our method captures long- and short-range feature dependen-
cies, enabling accurate localization and detection. In scenes
with combined objects (rows f and g), where the depth
differences between target and non-target regions are not
prominent, most methods mistakenly detect trapezoidal and
circular rocks due to erroneous guidance from the depth
map. In contrast, our method utilizes RGB information to
achieve separation. When dealing with irregular-shaped targets
(rows e, h, and k), our method employs uncertainty model-
ing to exploit fine-grained feature cues and enhance detail
information. Moreover, our method demonstrates complete
detection without omissions when handling multiple targets
(rows i and j).

G. Failure Samples and Future Work

In Figure 9, our method encounters significant limitations
in handling composite scenarios of low-quality depth maps
(row a), highly irregular shapes (row b), low contrast (row
c), and multiple small objects (row d). Low-quality depth

maps introduce spatial noise that distorts the uncertainty
distribution, impairing the UI’s ability to localize informative
regions and suppress unreliable cues during fusion accu-
rately. This distortion is particularly problematic in irregularly
shaped objects, where the frequency-based experts strug-
gle to maintain consistent contour continuity, resulting in
fragmented attention and incomplete saliency detection. In
low-contrast settings, both RGB and depth modalities are
compromised, i.e., RGB lacks sufficient gradient variation for
effective boundary extraction, while noisy depth cues become
less informative, hindering prototype alignment and expert
modulation. Additionally, when multiple small objects are
present, the degraded quality of depth maps further compli-
cates fusion, making it difficult to isolate individual targets
and accurately capture their features. These challenges reveal
the limitations of both feature disentanglement and expert
coordination under degraded input conditions, pointing to
areas for improving robustness and modality reliability. There-
fore, our future work focuses on: 1) Designing the unified
paradigm for extremely complex scenes; 2) Optimizing the
model efficiency, especially the expert strategies. 3) Expand-
ing to more scenarios, e.g., mirror detection [73] and aerial
perception [74].

V. CONCLUSION

In this paper, we rethink the existing USOD and RGB-D
SOD paradigms and propose the HEHP framework based on
expert and hierarchical representation learning. We facilitate
modal feature denoising and coupling through constructing
frequency prototypes and fine-grained interactions. We observe
the inherent differences between the RGB and depth branches,
explicitly designing high-low frequency experts for modula-
tion, and based on the FFE to fuse heterogeneous four-class
representations, avoiding biases introduced by static fusion.
Considering that noise carried by depth signals may affect
fine-grained features, we perform uncertainty modeling. We
further apply different supervisions to the three branches to
implicitly learn differences. In addition, we propose prototype
contrasts between modalities and images from both global
and patch perspectives to learn aligned compact representa-
tions. Extensive experiments on eleven datasets validate the
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effectiveness and transferability of the proposed methods and
components.
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